Agenda

* Lecture
— Design Patterns
- UML

CSC301, Winter 2013 Week 9, Slide 1

Design Patterns

Design Patterns

* Reusable design component

First codified by the Gang of Four in 1995

— Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides

Concept taken from architecture

— “APattern Language” by Christopher Alexander

— “...athree-part rule, which expresses a relation between a
certain context, a problem, and a solution.”

Original Gang of Four book described 23 patterns

— More have been added

— Other authors have written books

CSC301, Winter 2013 Week 9, Slide 3

Design Patterns Template

Context
— General situation in which
the pattern applies
Problem
— The main difficulty being
tackled
Forces

— lIssues or concerns that
need to be considered.
Includes criteria for
evaluating a good solution.

Solution

— Recommended way to solve
the problem in the context.
The solution “balances the
forces”

CSC301, Winter 2013

The following are optional

Antipatterns
— Common mistakes to avoid
Related Patterns

— Similar patterns; could be
alternated solutions or work
with the pattern

References
— Source of pattern

— Who developed or
inspired the pattern

Week 9, Slide 4

Gang of Four Design Patterns

* Creational Patterns
— Abstract Factory
Builder
Factory Method
Prototype
Singleton
» Structural Patterns
— Adapter
— Bridge
— Composite
— Decorator
— Facgade
— Flyweight
— Proxy

CSC301, Winter 2013

Behavioral Patterns

Chain of Responsibility
Command
Interpreter
Iterator

Mediator
Memento
Observer

State

Strategy
Template Method
Visitor

Week 9, Slide 5

Patterns in Java

* Chain of Responsibility
— Exception handling
— Try/catch/throw blocks

 |terator
— Container classes
e Observer

— Listeners in GUIs

CSC301, Winter 2013 Week 9, Slide 6

Gang of Four Design Patterns

« Creational Patterns

— Abstract Factory

— Builder
— Factory Method
— Prototype
— Singleton
» Structural Patterns
— Adapter
— Bridge
— Composite
— Decorator
— Facade
— Flyweight
— Proxy

CSC301, Winter 2013

Behavioral Patterns

Chain of Responsibility
Command
Interpreter
Iterator

Mediator
Memento
Observer

State

Strategy
Template Method
Visitor

Week 9, Slide 7

The Facade Pattern

*Context
— Often, an application contains several complex packages.
— A programmer working with such packages has to manipulate
many different classes
*Problem
— How do you simplify the view that programmers have of a
complex package?
*Forces

—It is hard for a programmer to understand and use an entire
subsystem

—If several different application classes call methods of the
complex package, then any modifications made to the package
will necessitate a complete review of all these classes.

CSC301, Winter 2013 Week 9, Slide 8

The Facade Pattern The Facade Pattern

*Solution » Solution
— Provide a simple interface to a complex subsystem.

— Decouple the classes of the subsystem from its clients and
client classes other subsystems, thereby promoting subsystem
independence and portability

* Facade

subsystem classes
CSC301, Winter 2013 Week 9, Slide 9 CSC301, Winter 2013 Week 9, Slide 10
Using the Facade Pattern Facade Example
* Hides implementation details
* Promotes weak coupling between the subsystem and Compiler
ItS CllentS — Compile()
« Reduces compilation dependencies in large software asses
systems i i 1 e _Soswer -m| Token Je—
E E :———.i Parser I | Symbol }-—
« Does not add any functionality, it just simplifies ofpros i |- ’/k —
interfaces i
- Does not prevent clients from accessing the -
underlying classes. [pretoriiide
I StackMachineCodeGenerator | I RISCCodeGenerator | @

CSC301, Winter 2013 Week 9, Slide 11 CSC301, Winter 2013 Week 9, Slide 12

Package Diagrams

» Package is

a grouping construct

— Most commonly used for class diagrams, but can be used
with any UML diagram or elements

— Used to create a hierarchy or higher level of abstraction
— Corresponds to package in Java

* Each package represents a namespace

— Like Java,

packages

Inf111/CSE121

can have classes with same name in different

Slide

Representing Packages

java::util

util util
Date
util Date
Contents listed in box Contents diagramed in box

java
util

Date
Date

java::util::Date

Fully qualified package name Nested packages Fully qualified class name

Intir/eseizi

Sliae

