
Week 9, Slide CSC301, Winter 2013

Agenda
• Lecture

– Design Patterns
– UML

1

Design Patterns

Week 9, Slide CSC301, Winter 2013

Design Patterns
• Reusable design component
• First codified by the Gang of Four in 1995

– Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides

• Concept taken from architecture
– “A Pattern Language” by Christopher Alexander
– “…a three-part rule, which expresses a relation between a

certain context, a problem, and a solution.”
• Original Gang of Four book described 23 patterns

– More have been added
– Other authors have written books

3 Week 9, Slide CSC301, Winter 2013

Design Patterns Template
• Context

– General situation in which
the pattern applies

• Problem
– The main difficulty being

tackled
• Forces

– Issues or concerns that
need to be considered.
Includes criteria for
evaluating a good solution.

• Solution
– Recommended way to solve

the problem in the context.
The solution “balances the
forces”

• The following are optional

• Antipatterns
– Common mistakes to avoid

• Related Patterns
– Similar patterns; could be

alternated solutions or work
with the pattern

• References
– Source of pattern
– Who developed or

inspired the pattern

4

Week 9, Slide CSC301, Winter 2013

Gang of Four Design Patterns
• Creational Patterns

– Abstract Factory
– Builder
– Factory Method
– Prototype
– Singleton

• Structural Patterns
– Adapter
– Bridge
– Composite
– Decorator
– Façade
– Flyweight
– Proxy

• Behavioral Patterns
– Chain of Responsibility
– Command
– Interpreter
– Iterator
– Mediator
– Memento
– Observer
– State
– Strategy
– Template Method
– Visitor

5 Week 9, Slide CSC301, Winter 2013

Patterns in Java
• Chain of Responsibility

– Exception handling
– Try/catch/throw blocks

• Iterator
– Container classes

• Observer
– Listeners in GUIs

6

Week 9, Slide CSC301, Winter 2013

Gang of Four Design Patterns
• Creational Patterns

– Abstract Factory
– Builder
– Factory Method
– Prototype
– Singleton

• Structural Patterns
– Adapter
– Bridge
– Composite
– Decorator
– Façade
– Flyweight
– Proxy

• Behavioral Patterns
– Chain of Responsibility
– Command
– Interpreter
– Iterator
– Mediator
– Memento
– Observer
– State
– Strategy
– Template Method
– Visitor

7 Week 9, Slide CSC301, Winter 2013

The Façade Pattern
•Context

– Often, an application contains several complex packages.
– A programmer working with such packages has to manipulate

many different classes
•Problem

– How do you simplify the view that programmers have of a
complex package?

•Forces
– It is hard for a programmer to understand and use an entire

subsystem
– If several different application classes call methods of the

complex package, then any modifications made to the package
will necessitate a complete review of all these classes.

8

Week 9, Slide CSC301, Winter 2013

The Façade Pattern
•Solution

9 Week 9, Slide CSC301, Winter 2013

The Façade Pattern
• Solution

– Provide a simple interface to a complex subsystem.
– Decouple the classes of the subsystem from its clients and

other subsystems, thereby promoting subsystem
independence and portability

10

Week 9, Slide CSC301, Winter 2013

Using the Façade Pattern
• Hides implementation details
• Promotes weak coupling between the subsystem and

its clients.
• Reduces compilation dependencies in large software

systems

• Does not add any functionality, it just simplifies
interfaces

• Does not prevent clients from accessing the
underlying classes.

11 Week 9, Slide CSC301, Winter 2013

Façade Example

12

Slide Inf111/CSE121

Package Diagrams
• Package is a grouping construct

– Most commonly used for class diagrams, but can be used
with any UML diagram or elements

– Used to create a hierarchy or higher level of abstraction
– Corresponds to package in Java

• Each package represents a namespace
– Like Java, can have classes with same name in different

packages

Slide Inf111/CSE121

Representing Packages

