
Week 11, Slide CSC301, Fall 2013

Agenda
• Lecture

– Design Patterns
– UML

1

• Class diagrams define the structure of the classes in a system, the 
relationship between all classes, and the components of each class.
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Class Diagrams

A class is a general concept 
(represented as a square box). A 
class defines the structural 
attributes and behavioural 
characteristics of that concept.  
Shown as a rectangle labeled with 
the class name. 

Class

A (semantic) relationship between 
classes. A line that joins two 
classes.

Association

• Types of associations
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Class Diagrams (cont)

Binary

n-ary

Aggregation (has-a)

Composition (is-composed-of)

Generalization (is-a-kind-of)

• Types of associations (cont)
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Class Diagrams (cont)

Dependency Realization

The source class depends on (uses) 
the target class

Class supports all operations of 
target class but not all attributes or 
associations. 



• Attributes and operations

• Multiplicity
– n, where n = {0, 1, x, *}
– m..n, where m,n = {0, 1, x, *}
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Class Diagrams (cont)

Attributes are what is known about 
each object of this class type. 
Operations are what objects of this 
class type do.
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Design Patterns Template
• Context

– General situation in which 
the pattern applies

• Problem
– The main difficulty being 

tackled
• Forces

– Issues or concerns that 
need to be considered. 
Includes criteria for 
evaluating a good solution.

• Solution
– Recommended way to solve 

the problem in the context. 
The solution “balances the 
forces”

• The following are optional

• Antipatterns
– Common mistakes to avoid

• Related Patterns
– Similar patterns; could be 

alternated solutions or work 
with the pattern

• References
– Source of pattern
– Who developed or 

inspired the pattern
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Gang of Four Design Patterns
• Creational Patterns

– Abstract Factory
– Builder
– Factory Method
– Prototype
– Singleton

• Structural Patterns
– Adapter
– Bridge
– Composite
– Decorator
– Façade
– Flyweight
– Proxy

• Behavioral Patterns
– Chain of Responsibility
– Command
– Interpreter
– Iterator
– Mediator
– Memento
– Observer
– State
– Strategy
– Template Method
– Visitor
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Strategy Design Pattern
• Context

– Define a family of algorithms, so they are interchangeable. 
• Also Known As

– Policy
• Problem

– How to design for varying, but related algorithms or policies? 
How to design for the ability to change the algorithms or 
policies?

• Solution
– Define each algorithm/policy/strategy in a separate class 

with a common interface
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Strategy Design Pattern
• Structure
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Example
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Strategy Design Pattern
• Participants

– Strategy interface, concrete Strategy, and Context/client
• Consequences

– Provides an alternative to subclassing the Context class to 
get a variety of algorithms or behaviors

– Eliminates large conditional statements
– Provides a choice of implementations for the same behavior
– Increases the number of objects
– All algorithms must use the same Strategy interface

• Implementation
– Can use an Abstract Factory to create a Strategy
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The Observer Pattern
•Context

– When an association is created between two classes, the code 
for the classes becomes inseparable. 

– If you want to reuse one class, then you also have to reuse the 
other.

•Problem 
– How do you reduce the interconnection between classes, 

especially between classes that belong to different modules or 
subsystems?

•Forces
– You want to maximize the flexibility of the system to the greatest 

extent possible 
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The Observer Pattern
• Solution
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Observer
•Antipatterns (Don’t do this)

– Connect an observer directly to an observable so that they both 
have references to each other. 

– Make the observers subclasses of the observable. 
•Reference

– Gang of Four
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The Observer Pattern
• Solution
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Observer in Java
• Observer interface and Observable class exist

– java.util.Observer and java.util.Observable
• But people usually implement their own

– Usually can’t or don’t want to sub-class from Observable
– Can’t have your own class hierarchy and multiple inheritance 

is not available
– Has been replaced by the Java Delegation Event Model 

(DEM)
• Passes event objects instead of update/notify

• Listener is specific to GUI classes
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