
Week 11, Slide CSC301, Fall 2013

Agenda
• Lecture

– Design Patterns
– UML

1

• Class diagrams define the structure of the classes in a system, the
relationship between all classes, and the components of each class.

Week 11, Slide CSC301, Fall 2013

Class Diagrams

A class is a general concept
(represented as a square box). A
class defines the structural
attributes and behavioural
characteristics of that concept.
Shown as a rectangle labeled with
the class name.

Class

A (semantic) relationship between
classes. A line that joins two
classes.

Association

• Types of associations

Week 11, Slide CSC301, Fall 2013

Class Diagrams (cont)

Binary

n-ary

Aggregation (has-a)

Composition (is-composed-of)

Generalization (is-a-kind-of)

• Types of associations (cont)

Week 11, Slide CSC301, Fall 2013

Class Diagrams (cont)

Dependency Realization

The source class depends on (uses)
the target class

Class supports all operations of
target class but not all attributes or
associations.

• Attributes and operations

• Multiplicity
– n, where n = {0, 1, x, *}
– m..n, where m,n = {0, 1, x, *}

Week 11, Slide CSC301, Fall 2013

Class Diagrams (cont)

Attributes are what is known about
each object of this class type.
Operations are what objects of this
class type do.

Week 11, Slide CSC301, Fall 2013

Design Patterns Template
• Context

– General situation in which
the pattern applies

• Problem
– The main difficulty being

tackled
• Forces

– Issues or concerns that
need to be considered.
Includes criteria for
evaluating a good solution.

• Solution
– Recommended way to solve

the problem in the context.
The solution “balances the
forces”

• The following are optional

• Antipatterns
– Common mistakes to avoid

• Related Patterns
– Similar patterns; could be

alternated solutions or work
with the pattern

• References
– Source of pattern
– Who developed or

inspired the pattern

6

Week 11, Slide CSC301, Fall 2013

Gang of Four Design Patterns
• Creational Patterns

– Abstract Factory
– Builder
– Factory Method
– Prototype
– Singleton

• Structural Patterns
– Adapter
– Bridge
– Composite
– Decorator
– Façade
– Flyweight
– Proxy

• Behavioral Patterns
– Chain of Responsibility
– Command
– Interpreter
– Iterator
– Mediator
– Memento
– Observer
– State
– Strategy
– Template Method
– Visitor

7 Week 11, Slide CSC301, Fall 2013

Strategy Design Pattern
• Context

– Define a family of algorithms, so they are interchangeable.
• Also Known As

– Policy
• Problem

– How to design for varying, but related algorithms or policies?
How to design for the ability to change the algorithms or
policies?

• Solution
– Define each algorithm/policy/strategy in a separate class

with a common interface

8

Week 11, Slide CSC301, Fall 2013

Strategy Design Pattern
• Structure

9 Week 11, Slide CSC301, Fall 2013

Example

10

Week 11, Slide CSC301, Fall 2013

Strategy Design Pattern
• Participants

– Strategy interface, concrete Strategy, and Context/client
• Consequences

– Provides an alternative to subclassing the Context class to
get a variety of algorithms or behaviors

– Eliminates large conditional statements
– Provides a choice of implementations for the same behavior
– Increases the number of objects
– All algorithms must use the same Strategy interface

• Implementation
– Can use an Abstract Factory to create a Strategy

11 Week 11, Slide CSC301, Fall 2013

The Observer Pattern
•Context

– When an association is created between two classes, the code
for the classes becomes inseparable.

– If you want to reuse one class, then you also have to reuse the
other.

•Problem
– How do you reduce the interconnection between classes,

especially between classes that belong to different modules or
subsystems?

•Forces
– You want to maximize the flexibility of the system to the greatest

extent possible

12

Week 11, Slide CSC301, Fall 2013

The Observer Pattern
• Solution

13 Week 11, Slide CSC301, Fall 2013

Observer
•Antipatterns (Don’t do this)

– Connect an observer directly to an observable so that they both
have references to each other.

– Make the observers subclasses of the observable.
•Reference

– Gang of Four

14

Week 11, Slide CSC301, Fall 2013

The Observer Pattern
• Solution

15 Week 11, Slide CSC301, Fall 2013

Observer in Java
• Observer interface and Observable class exist

– java.util.Observer and java.util.Observable
• But people usually implement their own

– Usually can’t or don’t want to sub-class from Observable
– Can’t have your own class hierarchy and multiple inheritance

is not available
– Has been replaced by the Java Delegation Event Model

(DEM)
• Passes event objects instead of update/notify

• Listener is specific to GUI classes

16

