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Agenda
• Lecture

– Design Patterns
– UML
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Sequence Diagram of Observer
• Shows runtime interactions
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• Sequence diagrams provide a more detailed look of the sequence of 
steps executed in a use case
– Normally used for lower-level design
– If you wanted to specify all of your application’s scenarios with sequence 

diagrams, you would need one for each of its features’ ramifications
• So we are usually interested in key scenarios only

• Sequence diagrams show:
– The actors and software classes/objects that intervene in the scenario
– The step-by-step interactions between them

• Chronologically, from top to bottom

– Details regarding when objects are created and activated
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Sequence Diagrams
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Sequence Diagrams (cont)
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Sequence Diagrams (cont)
• This is not the full story

– We can illustrate branching, guards (conditions necessary for the execution 
of a call), asynchronous messaging, and more

– In UML 2.0, sequence diagrams went through a major overhaul
• Conditionals, loops, etc.

• We don’t need the full story for this course
– These basics are enough
– But if you want to invest time in learning more about UML, sequence 

diagrams are the place to start
• Along with class diagrams, they are the most frequently used kind of model
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Strategy Design Pattern
• Context

– Define a family of algorithms, so they are interchangeable. 
• Also Known As

– Policy
• Problem

– How to design for varying, but related algorithms or policies? 
How to design for the ability to change the algorithms or 
policies?

• Solution
– Define each algorithm/policy/strategy in a separate class 

with a common interface
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Example
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Strategy Design Pattern
• Participants

– Strategy interface, concrete Strategy, and Context/client
• Consequences

– Provides an alternative to subclassing the Context class to 
get a variety of algorithms or behaviors

– Eliminates large conditional statements
– Provides a choice of implementations for the same behavior
– Increases the number of objects
– All algorithms must use the same Strategy interface

• Implementation
– Can use an Abstract Factory to create a Strategy
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Abstract Factory
• Context

– Related classes that implement a common interface
• Problem

– Need to encapsulate the instantiation of the related classes
• Forces

– Information hiding
– Keep related classes together

• Solution
– Define a factory interface (the abstract factory). Define a 

concrete factory class for each family of things to create. 
– Optionally, define a true abstract class that implements the 

factory interface and provides common services to the 
concrete factories that extend it.
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• Structure
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Abstract Factory (cont.)
• Participants

– Abstract Factory
– Concrete Factory
– Abstract Product
– Concrete Product
– Client

• Consequences
– Isolates concrete classes.
– Simplifies exchanging families
– Promotes consistency
– Supporting new kinds of products is difficult
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The Singleton Pattern
•Context

– It is very common to find classes for which only one instance 
should exist (singleton) 

•Problem 
– How do you ensure that it is never possible to create more than 

one instance of a singleton class? 
•Forces

– The use of a public constructor cannot guarantee that no more 
than one instance will be created. 

– The singleton instance must also be accessible to all classes 
that require it 
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The Singleton Pattern
• Solution
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Singleton
• Example

WindowMgr

theWindowMgr

WindowMgr «private»
getInstance

if (theWindowMgr==null) 
  theWindowMgr= new WindowMgr(); 
 
return theWindowMgr;

«Singleton»

theInstance

getInstance

Constructor for WindowMgr is private
getInstance is public and static
theWindowMgr is private and static

This is the code for getInstance

Pattern

Instantiation 
of Pattern
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Singleton Design Pattern
public class WindowMgr {

    private static WindowMgr theWindowMgr;

    private String windowLabel;

    

    private WindowMgr (){

 }

    

    // Lazy instantiation

    public static synchronized WindowMgr getInstance(){

        if (theWindowMgr == null){

            theWindowMgr = new WindowMgr();

        }

        return theWindowMgr;

    }

    

...

}
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Singleton Design Pattern
public class WindowMgr {
    // Eager instantiation
    private static WindowMgr theWindowMgr = new WindowMgr();
    private String windowLabel;
    
    private WindowMgr (){
 }
    
    public static synchronized WindowMgr getInstance(){
        return theWindowMgr;
    }
    
...
}
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Questions
• Why do you need the getInstance method? Why isn’t 

it enough to just make theWindowMgr static (i.e. one 
per class)?
– This results in extra instances of WindowMgr, but still only 

one underlying theWindowMgr

• Why do you need an instance of WindowMgr at all? 
Why not just make all the methods static?
– May need an instance, e.g. as an observer, for callbacks
– More flexible when you discover later that you don’t want 

WindowMgr to be a singleton any more
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Drawbacks
• Need to add synchronization to getInstance

– Race condition could occur in if block
• Sub-classing becomes complicated 

– Private constructor violates normal Java design principles
– Could change constructor to protected, but that would violate 

the security provided
• Make a sub-class that is identical to parent
• Can have lots of pseudo-WindowMgrs running around

– Alternatively, each sub-class has own getInstance method
• Also need to prevent cloning by overriding Cloneable 

interface
• Erich Gamma doesn’t like Singleton any more
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Singleton Design Pattern
• Related Patterns

– Factory and Façade
• Reference

– Gang of Four
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• The Unified Modeling Language is an industry standard for 
specifying and visualizing the artifacts of software systems

– A collection of diagrammatic languages to express everything from class 
structures to execution scenarios

– A joint effort by object-oriented modeling researchers to merge their 
different approaches

• James Rumbaugh, Grady Booch, Ivar Jacobson
• UML 1.0 came out in 1997
• Current version, UML 2.0
• http://www.uml.org/

• If there is one modeling language that you need to know to 
get a job, this is it

– Although frankly you may not need to use it once you get that job
– If “Model-Driven Development” takes off, you will need this

• Easy to learn the basics, very hard to master it
– Especially the newest version
– For now all you need are those easy-to-learn basics
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What is UML and why should I care?
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The many diagrams of UML


