
Week 12, Slide CSC301, Winter 2013

Agenda
• Lecture

– Design Patterns
– UML

1 Week 12, Slide CSC301, Winter 2013

Sequence Diagram of Observer
• Shows runtime interactions

2

• Sequence diagrams provide a more detailed look of the sequence of
steps executed in a use case
– Normally used for lower-level design
– If you wanted to specify all of your application’s scenarios with sequence

diagrams, you would need one for each of its features’ ramifications
• So we are usually interested in key scenarios only

• Sequence diagrams show:
– The actors and software classes/objects that intervene in the scenario
– The step-by-step interactions between them

• Chronologically, from top to bottom

– Details regarding when objects are created and activated

Week 12, Slide CSC301, Winter 2013

Sequence Diagrams

Week 12, Slide CSC301, Winter 2013

Sequence Diagrams (cont)

Week 12, Slide CSC301, Winter 2013

Sequence Diagrams (cont)
• This is not the full story

– We can illustrate branching, guards (conditions necessary for the execution
of a call), asynchronous messaging, and more

– In UML 2.0, sequence diagrams went through a major overhaul
• Conditionals, loops, etc.

• We don’t need the full story for this course
– These basics are enough
– But if you want to invest time in learning more about UML, sequence

diagrams are the place to start
• Along with class diagrams, they are the most frequently used kind of model

Week 12, Slide CSC301, Winter 2013

Strategy Design Pattern
• Context

– Define a family of algorithms, so they are interchangeable.
• Also Known As

– Policy
• Problem

– How to design for varying, but related algorithms or policies?
How to design for the ability to change the algorithms or
policies?

• Solution
– Define each algorithm/policy/strategy in a separate class

with a common interface

6

Week 12, Slide CSC301, Winter 2013

Example

7 Week 12, Slide CSC301, Winter 2013

Strategy Design Pattern
• Participants

– Strategy interface, concrete Strategy, and Context/client
• Consequences

– Provides an alternative to subclassing the Context class to
get a variety of algorithms or behaviors

– Eliminates large conditional statements
– Provides a choice of implementations for the same behavior
– Increases the number of objects
– All algorithms must use the same Strategy interface

• Implementation
– Can use an Abstract Factory to create a Strategy

8

Week 12, Slide CSC301, Winter 2013

Abstract Factory
• Context

– Related classes that implement a common interface
• Problem

– Need to encapsulate the instantiation of the related classes
• Forces

– Information hiding
– Keep related classes together

• Solution
– Define a factory interface (the abstract factory). Define a

concrete factory class for each family of things to create.
– Optionally, define a true abstract class that implements the

factory interface and provides common services to the
concrete factories that extend it.

9 Week 12, Slide CSC301, Winter, 2013 10

• Structure

Week 12, Slide CSC301, Winter 2013 11

Abstract Factory (cont.)
• Participants

– Abstract Factory
– Concrete Factory
– Abstract Product
– Concrete Product
– Client

• Consequences
– Isolates concrete classes.
– Simplifies exchanging families
– Promotes consistency
– Supporting new kinds of products is difficult

Week 12, Slide CSC301, Winter 2013

The Singleton Pattern
•Context

– It is very common to find classes for which only one instance
should exist (singleton)

•Problem
– How do you ensure that it is never possible to create more than

one instance of a singleton class?
•Forces

– The use of a public constructor cannot guarantee that no more
than one instance will be created.

– The singleton instance must also be accessible to all classes
that require it

12

Week 12, Slide CSC301, Winter 2013

The Singleton Pattern
• Solution

13 Week 12, Slide CSC301, Winter 2013

Singleton
• Example

WindowMgr

theWindowMgr

WindowMgr «private»
getInstance

if (theWindowMgr==null)
 theWindowMgr= new WindowMgr();

return theWindowMgr;

«Singleton»

theInstance

getInstance

Constructor for WindowMgr is private
getInstance is public and static
theWindowMgr is private and static

This is the code for getInstance

Pattern

Instantiation
of Pattern

14

Week 12, Slide CSC301, Winter 2013

Singleton Design Pattern
public class WindowMgr {

 private static WindowMgr theWindowMgr;

 private String windowLabel;

 private WindowMgr (){

 }

 // Lazy instantiation

 public static synchronized WindowMgr getInstance(){

 if (theWindowMgr == null){

 theWindowMgr = new WindowMgr();

 }

 return theWindowMgr;

 }

...

}

15 Week 12, Slide CSC301, Winter 2013

Singleton Design Pattern
public class WindowMgr {
 // Eager instantiation
 private static WindowMgr theWindowMgr = new WindowMgr();
 private String windowLabel;

 private WindowMgr (){
 }

 public static synchronized WindowMgr getInstance(){
 return theWindowMgr;
 }

...
}

16

Week 12, Slide CSC301, Winter 2013

Questions
• Why do you need the getInstance method? Why isn’t

it enough to just make theWindowMgr static (i.e. one
per class)?
– This results in extra instances of WindowMgr, but still only

one underlying theWindowMgr

• Why do you need an instance of WindowMgr at all?
Why not just make all the methods static?
– May need an instance, e.g. as an observer, for callbacks
– More flexible when you discover later that you don’t want

WindowMgr to be a singleton any more

17 Week 12, Slide CSC301, Winter 2013

Drawbacks
• Need to add synchronization to getInstance

– Race condition could occur in if block
• Sub-classing becomes complicated

– Private constructor violates normal Java design principles
– Could change constructor to protected, but that would violate

the security provided
• Make a sub-class that is identical to parent
• Can have lots of pseudo-WindowMgrs running around

– Alternatively, each sub-class has own getInstance method
• Also need to prevent cloning by overriding Cloneable

interface
• Erich Gamma doesn’t like Singleton any more

18

Week 12, Slide CSC301, Winter 2013

Singleton Design Pattern
• Related Patterns

– Factory and Façade
• Reference

– Gang of Four

19

• The Unified Modeling Language is an industry standard for
specifying and visualizing the artifacts of software systems

– A collection of diagrammatic languages to express everything from class
structures to execution scenarios

– A joint effort by object-oriented modeling researchers to merge their
different approaches

• James Rumbaugh, Grady Booch, Ivar Jacobson
• UML 1.0 came out in 1997
• Current version, UML 2.0
• http://www.uml.org/

• If there is one modeling language that you need to know to
get a job, this is it

– Although frankly you may not need to use it once you get that job
– If “Model-Driven Development” takes off, you will need this

• Easy to learn the basics, very hard to master it
– Especially the newest version
– For now all you need are those easy-to-learn basics

Week 12, Slide CSC301, Winter 2013

What is UML and why should I care?

20

Week 12, Slide CSC301, Winter 2013

The many diagrams of UML

