Agenda

Sequence Diagram of Observer

* Lecture
— Design Patterns
- UML

CSC301, Winter 2013

Week 12, Slide 1

« Shows runtime interactions

CSC301, Winter 2013

Sequence Diagrams

Sequence Diagrams (cont)

e Sequence diagrams provide a more detailed look of the sequence of
steps executed in a use case
— Normally used for lower-level design

- If you wanted to specify all of your application’s scenarios with sequence
diagrams, you would need one for each of its features’ ramifications

e So we are usually interested in key scenarios only

e Sequence diagrams show:
- The actors and software classes/objects that intervene in the scenario
— The step-by-step interactions between them
e Chronologically, from top to bottom
- Details regarding when objects are created and activated

CSC301, Winter 2013

Week 12, Slide

A

Week 12, Slide 2

Campaign
Manager
:Client :Campaign :Advert
getName()
— T T
listCampaigns() : ’E'ScxetC_lampaigni :
p Details() ; ;
listAdverts() T *getAdvert |
: Details() _ 1
addNewAdvert() : . .
' Advert() } newAd:Advert
z Al N
- v i .
s Activation !
Object lifeline i

Object creation

CSC301, Winter 2013

Week 12, Slide

Sequence Diagrams (cont)

e This is not the full story

- We can illustrate branching, guards (conditions necessary for the execution
of a call), asynchronous messaging, and more

- In UML 2.0, sequence diagrams went through a major overhaul
* Conditionals, loops, etc.

e We don’t need the full story for this course
- These basics are enough

- But if you want to invest time in learning more about UML, sequence
diagrams are the place to start

e Along with class diagrams, they are the most frequently used kind of model

CSC301, Winter 2013 Week 12, Slide

Strategy Design Pattern

* Context

— Define a family of algorithms, so they are interchangeable.
* Also Known As

— Policy
* Problem

— How to design for varying, but related algorithms or policies?
How to design for the ability to change the algorithms or
policies?

Solution

— Define each algorithm/policy/strategy in a separate class
with a common interface

CSC301, Winter 2013 Week 12, Slide 6

Example

«interface»
ISalePricingStrategy |
A |
getTotal(Sale) : Money |

PR =N

T
|
|

_ | ~
|
|

- I ~

B i

]
PercentDiscount AbsoluteDiscount | ?7?
PricingStrategy OverThreshold PricingStrategy |

Pricir
percentage : float \]
P
— 4

discount : Money
getTotal(s:Sale) : Money threshold : Money

o getTotal(s:Sale) : Money
I |
o

{ f)d PreDi tTotal() ~
. i tTotal() * t it := s.getPreDiscountTotal
)retum s.getPreDiscountTotal() * percentage K (pat < threshold) 1
return pdt ;
else |
return pdt - discount
}
CSC301, Winter 2013 Week 12, Slide 7

Strategy Design Pattern

» Participants
— Strategy interface, concrete Strategy, and Context/client
» Consequences

Provides an alternative to subclassing the Context class to
get a variety of algorithms or behaviors

Eliminates large conditional statements
Provides a choice of implementations for the same behavior
Increases the number of objects
All algorithms must use the same Strategy interface
* Implementation
— Can use an Abstract Factory to create a Strategy

CSC301, Winter 2013 Week 12, Slide 8

Abstract Factory

e Context

— Related classes that implement a common interface

¢ Problem

— Need to encapsulate the instantiation of the related classes

* Forces

— Information hiding
— Keep related classes together

Solution

— Define a factory interface (the abstract factory). Define a
concrete factory class for each family of things to create.

— Optionally, define a true abstract class that implements the
factory interface and provides common services to the

concrete factories that extend it.

CSC301, Winter 2013

Week 12, Slide 9

e Structure

Application

I Client

|

I

L.
<<interface>> TN <<interfaces>
GUIFactory Abstract Factory ' o 1 _Abstract Product! Bytton
+createButton(): Button ! +paint () : void
| I
! |
| I
| S |
| Concrete Factory / \ Concrete Product |
| N .
r— WinFactory WinButton —--:
: +createButton () : Button +paint () : void :
| |
| I
| <<creates>> |
- OSXFactory [————————- —>| OSXButton [——
+createButton() : Button +paint () : void
CSC301, Winter, 2013 Week 12, Slide 10

Abstract Factory (cont.)

» Participants
— Abstract Factory
— Concrete Factory
Abstract Product
Concrete Product
Client

» Consequences
— Isolates concrete classes.
— Simplifies exchanging families
— Promotes consistency
— Supporting new kinds of products is difficult

CSC301, Winter 2013

Week 12, Slide 11

The Singleton Pattern

*Context

— It is very common to find classes for which only one instance
should exist (singleton)

*Problem
—How do you ensure that it is never possible to create more than
one instance of a singleton class?
*Forces

— The use of a public constructor cannot guarantee that no more
than one instance will be created.

— The singleton instance must also be accessible to all classes
that require it

CSC301, Winter 2013 Week 12, Slide 12

The Singleton Pattern

« Solution

Singleton

- =
static Instance{) O---{--------- retum uniquelnstance

SingletonOperation()
GetSingletonData()

static uniquelnstance
singletonData

CSC301, Winter 2013

Week 12, Slide 13

Singleton

* Example

Pattern «Singletony|
thelnstance

getlnstance

This is the code for getinstance

o WindowMgr
Instantiation - if (theWindowMgr==nul) E
of Pattern theWindowMgr theWindowMgr= new WindowMgr()
WindowMgr «private»
getinstance return theWindowMgr;

Constructor for WindowMgr is private
getlnstance is public and static
theWindowMgr is private and static

CSC301, Winter 2013 Week 12, Slide 14

Singleton Design Pattern

public class WindowMgr {
private static WindowMgr theWindowMgr;
private String windowLabel;

private WindowMgr () {
}

// Lazy instantiation
public static synchronized WindowMgr getInstance () {
if (theWindowMgr == null) {
theWindowMgr = new WindowMgr () ;
}

return theWindowMgr;

CSC301, Winter 2013

Week 12, Slide 15

Singleton Design Pattern

public class WindowMgr ({
// Eager instantiation
private static WindowMgr theWindowMgr = new WindowMgr () ;
private String windowLabel;

private WindowMgr () {
}

public static synchronized WindowMgr getInstance () {
return theWindowMgr;

CSC301, Winter 2013 Week 12, Slide 16

Questions

* Why do you need the getinstance method? Why isn’t
it enough to just make theWindowMgr static (i.e. one
per class)?

— This results in extra instances of WindowMgr, but still only
one underlying theWindowMgr

* Why do you need an instance of WindowMgr at all?
Why not just make all the methods static?
— May need an instance, e.g. as an observer, for callbacks

— More flexible when you discover later that you don’t want
WindowMgr to be a singleton any more

CSC301, Winter 2013 Week 12, Slide 17

Drawbacks

* Need to add synchronization to getinstance
— Race condition could occur in if block

* Sub-classing becomes complicated
— Private constructor violates normal Java design principles
— Could change constructor to protected, but that would violate
the security provided
* Make a sub-class that is identical to parent
» Can have lots of pseudo-WindowMgrs running around
— Alternatively, each sub-class has own getinstance method

» Also need to prevent cloning by overriding Cloneable
interface

* Erich Gamma doesn’t like Singleton any more

CSC301, Winter 2013 Week 12, Slide 18

Singleton Design Pattern

* Related Patterns

— Factory and Facade
» Reference

— Gang of Four

CSC301, Winter 2013 Week 12, Slide 19

What is UML and why should | care?

* The Unified Modeling Language is an industry standard for
specifying and visualizing the artifacts of software systems

— Acollection of diagrammatic languages to express everything from class
structures to execution scenarios

— Ajoint effort by object-oriented modeling researchers to merge their
different approaches

» James Rumbaugh, Grady Booch, Ivar Jacobson
+ UML 1.0 came out in 1997
« Current version, UML 2.0
* http://www.uml.org/
+ If there is one modeling language that you need to know to
get a job, this is it
— Although frankly you may not need to use it once you get that job
— If “Model-Driven Development” takes off, you will need this

« Easy to learn the basics, very hard to master it
— Especially the newest version
— For now all you need are those easy-to-learn basics

CSC301, Winter 2013 Week 12, Slide 20

The many diagrams of UML

K
Structure
Diagra
Component Object Activity Use Case State Machine
Diagram Diagram Diagram Diagram Diagram
c it
Struetate Deployment Package interaction
Diagram Diagram 9 Diagram

Interaction

Sequence

Diagram

Diagram

Communication Timing
i Diagram

CSC301, Winter 2013 Week 12, Slide

