
Week 4, Slide CSC301, Winter 2013

Agenda
• Sit with your teams
• One baggie of Lego per person

• Announcements
• Lecture

– Test-Driven Development

• Tutorial
– Scrum with your TA
– Quiz

1 Week 4, Slide CSC301, Winter 2013 2

Announcements
• Peer Evaluation Forms

• Preliminary Deliverables now due on Tuesdays at
10pm
– TAs need more time to provide feedback

Understanding
TDD and Refactoring
with LEGO

Material adapted from
Bryan Beecham

@BillyGarnet

Exercise - 1

Open up one LEGO packet

Build a person and a house out of Lego

Admire your work

Take a photo.

Upload to Twitter or Facebook.

Brag to your friends.

Reference

Test-Driven
Development
By Example
Kent Beck

Why TDD

Clean code that works ~ Ron Jefferies

It is a predictable way to develop. You know when you
are finished, without having to worry about a long bug
trail

It gives you a chance to learn all of the lessons that the
code has to teach you. If you only slap together the first
thing you think of, then you never have time to think of a
second, better thing.

The Mantra
Red - Green - Refactor
photo from doolwind.com

The Mantra - Red

Write a small test that doesn’t work

The Mantra - Green

Do the minimum to make the test work

The Mantra - Refactor

Eliminate duplication

Exercise - 2

Build a person and a house with TDD

Prepare your environment

Clear the area in front of you. This is your program.

First Test

Does the person exist? No?

Hurray!!!
We failed the test!
Celebrate! High 5s!

Minimum to pass the test

Add a brick. Can that be a person?

Hurray!!!

The person now exists!

Not very impressive but it could represent a person.

We passed the test! We are rocking now!

Refactor

Remove any duplication. In this case we’re good.

Same thing for house

Steps?

Prepare your environment.

First test.

Test fails.

Minimum to pass the test.

Refactor.

We need a new test

The house is taller then the person.

Assert.IsTrue(house.height > person.height);

Hurray!!! -
More Failure
The person is the
same size so we fail
this test.
Well done!

Failure =
Learning Opportunity

If you’re not failing, you’re not learning.

Minimum to pass the test

Hurray!!! - Success

Alright, we passed the test.

Refactor

Still very simple. Still nice and clean.

Software Requirements

Software must do three things:

It must work

It must be understandable

It must be updatable

(Robert C. Martin...I think)

We need a new test

Is the house wider then the person? No?

We failed another test! Awesome! We are learning a lot
about improvements that are needed to our code.

Let’s do the minimum to pass the test.

Any duplication to remove?

We need a new test

Can your person fit in the house? Yikes! No.

We failed another test! Awesome! We are learning so
much about what our customer needs.

Let’s do the minimum to pass the test.

Any duplication to remove?

